Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Over the past decade, three-dimensional (3D) bioprinting has made significant progress, transforming into a key innovation in tissue engineering. Despite the early strides, critical challenges remain in 3D bioprinting that must be addressed to accelerate clinical translation. In particular, there is still a long way to go before functionally-mature, clinically-relevant tissue equivalents are developed. Current limitations range from the sub-optimal bioink properties and degree of biomimicry of bioprintable architectures, to the lack of stem/progenitor cells for massive cell expansion, and fundamental knowledge regardingin vitroculturing conditions. In addition to these problems, the absence of guidelines and well-regulated international standards is creating uncertainty among the biofabrication community stakeholders regarding the reliable and scalable production processes. This review aims at exploring the latest developments in 3D bioprinting approaches, including various additive manufacturing techniques and their applications. A thorough discussion of common bioprinting techniques and recent progresses are compiled along with notable recent studies. Later we discuss the current challenges in clinical application of 3D bioprinting and the major bottlenecks in the commercialization of 3D bioprinted tissue equivalents, including the longevity of bioprinted organs, meeting biomechanical requirements, and the often underrated ethical and legal aspects. Amidst the progress of regulatory efforts for regenerative medicine, we also present an overview of the current regulatory concerns which should be taken into account to translate bioprinted tissues into clinical practice. At last, this review emphasizes future directions in 3D bioprinting that includes the transformative ideas such as bioprinting in microgravity and the integration of artificial intelligence. The study concludes with a discussion on the need for collaborative efforts in resolving the technical and regulatory constraints to improve the quality, reliability, and reproducibility of bioprinted tissue equivalents to ultimately accomplish their successful clinical implementation.more » « lessFree, publicly-accessible full text available August 7, 2026
- 
            Cell aggregates are widely used to study heterotypic cellular interactions during the development of vascularization in vitro. In this study, we examined heterotypic cellular spheroids made of adipose-derived stem cells and CD34+/CD31− endothelial progenitor cells induced by the transfection of miR-148b mimic for de novo induction of osteogenic differentiation and miR-210 mimic for de novo induction of endotheliogenesis, respectively. The effect of the microRNA (miRs) mimic treatment group and induction time on codifferentiation was assessed in spheroids formed of transfected cells over the course of a 4-week culture. Based on gene and protein markers of osteogenic and endotheliogenic differentiation, as well as mineralization assays, our results showed that miRs directed cell differentiation and that progenitor maturity influenced the development of heterotypic cellular regions in aggregates. Overall, the success of coculture to create a prevascularized bone model is dependent on a number of factors, particularly the induction time of differentiation before combining the multiple cell types in aggregates. The approach that has been proposed could be valuable in creating vascularized bone tissue by employing spheroids as the building blocks of more complex issues through the use of cutting-edge methods such as 3D bioprinting.more » « less
- 
            Abstract Microgels have recently received widespread attention for their applications in a wide array of domains such as tissue engineering, regenerative medicine, and cell and tissue transplantation because of their properties like injectability, modularity, porosity, and the ability to be customized in terms of size, form, and mechanical properties. However, it is still challenging to mass (high-throughput) produce microgels with diverse sizes and tunable properties. Herein, we utilized an air-assisted co-axial device (ACAD) for continuous production of microgels in a high-throughput manner. To test its robustness, microgels of multiple hydrogels and their combination, including alginate (Alg), gelatin methacrylate (GelMA) and Alg–GelMA, were formed at a maximum production rate of ∼65 000 microgels s−1while retaining circularity and a size range of 50–500µm based on varying air pressure levels. The ACAD platform allowed single and multiple cell encapsulation with 74 ± 6% efficiency. These microgels illustrated appealing rheological properties such as yield stress, viscosity, and shear modulus for bioprinting applications. Specifically, Alg microgels have the potential to be used as a sacrificial support bath while GelMA microgels have potential for direct extrusion both on their own or when loaded in a bulk GelMA hydrogel. Generated microgels showed high cell viability (>90%) and proliferation of MDA-MB-231 and human dermal fibroblasts over seven days in both encapsulation and scaffolding applications, particularly for GelMA microgels. The developed strategy provides a facile and rapid approach without any complex or expensive consumables and accessories for scalable high-throughput microgel production for cell therapy, tissue regeneration and 3D bioprinting applications.more » « less
- 
            Abstract The engineering of osteochondral interfaces remains a challenge. MicroRNAs (miRs) have emerged as significant tools to regulate the differentiation and proliferation of osteogenic and chondrogenic formation in the human musculoskeletal system. Here, we describe a novel approach to osteochondral reconstruction based on the three-dimensional (3D) bioprinting of miR-transfected adipose-derived stem cell (ADSC) spheroids to produce a heterotypic interface that addresses the intrinsic limitations of the traditional approach to inducing zonal differentiation via the use of diffusible cytokines. We evaluated the delivery of miR-148b for osteogenic differentiation and the codelivery of miR-140 and miR-21 for the chondrogenic differentiation of ADSC spheroids. Our results demonstrated that miR-transfected ADSC spheroids exhibited upregulated expression of osteogenic and chondrogenic differentiation related gene and protein markers, and enhanced mineralization and cell proliferation compared to spheroids differentiated using a commercially-available differentiation medium. Upon confirmation of the osteogenic and chondrogenic potential of miR-transfected ADSC spheroids, using aspiration-assisted bioprinting, these spheroids were 3D bioprinted into a dual-layer heterotypic osteochondral interface with a stratified arrangement of distinct osteogenic and chondrogenic zones. The proposed approach holds great promise for the biofabrication of stratified tissues, not only for the osteochondral interfaces presented in this work, but also for other composite tissues and tissue interfaces, such as, but not limited to, the bone-tendon-muscle interface and craniofacial tissues.more » « less
- 
            Abstract Immunotherapy has revolutionized cancer treatment with the advent of advanced cell engineering techniques aimed at targeted therapy with reduced systemic toxicity. However, understanding the underlying immune–cancer interactions require development of advanced three-dimensional (3D) models of human tissues. In this study, we fabricated 3D tumor models with increasing complexity to study the cytotoxic responses of CD8 + T cells, genetically engineered to express mucosal-associated invariant T (MAIT) cell receptors, towards MDA-MB-231 breast cancer cells. Homotypic MDA-MB-231 and heterotypic MDA-MB-231/human dermal fibroblast tumor spheroids were primed with precursor MAIT cell ligand 5-amino-6-D-ribitylaminouracil (5-ARU). Engineered T cells effectively eliminated tumors after a 3 d culture period, demonstrating that the engineered T cell receptor recognized major histocompatibility complex class I-related (MR1) protein expressing tumor cells in the presence of 5-ARU. Tumor cell killing efficiency of engineered T cells were also assessed by encapsulating these cells in fibrin, mimicking a tumor extracellular matrix microenvironment. Expression of proinflammatory cytokines such as interferon gamma, interleukin-13, CCL-3 indicated immune cell activation in all tumor models, post immunotherapy. Further, in corroborating the cytotoxic activity, we found that granzymes A and B were also upregulated, in homotypic as well as heterotypic tumors. Finally, a 3D bioprinted tumor model was employed to study the effect of localization of T cells with respect to tumors. T cells bioprinted proximal to the tumor had reduced invasion index and increased cytokine secretion, which indicated a paracrine mode of immune–cancer interaction. Development of 3D tumor-T cell platforms may enable studying the complex immune–cancer interactions and engineering MAIT cells for cell-based cancer immunotherapies.more » « less
- 
            Abstract Aspiration-assisted freeform bioprinting (AAfB) has emerged as a promising technique for precise placement of tissue spheroids in three-dimensional (3D) space enabling tissue fabrication. To achieve success in embedded bioprinting using AAfB, an ideal support bath should possess shear-thinning behavior and yield-stress to facilitate tight fusion and assembly of bioprinted spheroids forming tissues. Several studies have demonstrated support baths for embedded bioprinting in the past few years, yet a majority of these materials poses challenges due to their low biocompatibility, opaqueness, complex and prolonged preparation procedures, and limited spheroid fusion efficacy. In this study, to circumvent the aforementioned limitations, we present the feasibility of AAfB of human mesenchymal stem cell (hMSC) spheroids in alginate microgels as a support bath. Alginate microgels were first prepared with different particle sizes modulated by blending time and concentration, followed by determination of the optimal bioprinting conditions by the assessment of rheological properties, bioprintability, and spheroid fusion efficiency. The bioprinted and consequently self-assembled tissue structures made of hMSC spheroids were osteogenically induced for bone tissue formation. Alongside, we investigated the effects of peripheral blood monocyte-derived osteoclast incorporation into the hMSC spheroids in heterotypic bone tissue formation. We demonstrated that alginate microgels enabled unprecedented positional accuracy (∼5%), transparency for visualization, and improved fusion efficiency (∼97%) of bioprinted hMSC spheroids for bone fabrication. This study demonstrates the potential of using alginate microgels as a support bath for many different applications including but not limited to freeform bioprinting of spheroids, cell-laden hydrogels, and fugitive inks to form viable tissue constructs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
